Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis.
نویسندگان
چکیده
The mechanisms that regulate cell death and inflammation play an important role in liver disease and cancer. Receptor-interacting protein kinase 1 (RIPK1) induces apoptosis and necroptosis via kinase-dependent mechanisms and exhibits kinase-independent prosurvival and proinflammatory functions. Here, we have used genetic mouse models to study the role of RIPK1 in liver homeostasis, injury, and cancer. While ablating either RIPK1 or RelA in liver parenchymal cells (LPCs) did not cause spontaneous liver pathology, mice with combined deficiency of RIPK1 and RelA in LPCs showed increased hepatocyte apoptosis and developed spontaneous chronic liver disease and cancer that were independent of TNF receptor 1 (TNFR1) signaling. In contrast, mice with LPC-specific knockout of Ripk1 showed reduced diethylnitrosamine-induced (DEN-induced) liver tumorigenesis that correlated with increased DEN-induced hepatocyte apoptosis. Lack of RIPK1 kinase activity did not inhibit DEN-induced liver tumor formation, showing that kinase-independent functions of RIPK1 promote DEN-induced hepatocarcinogenesis. Moreover, mice lacking both RIPK1 and TNFR1 in LPCs displayed normal tumor formation in response to DEN, demonstrating that RIPK1 deficiency decreases DEN-induced liver tumor formation in a TNFR1-dependent manner. Therefore, these findings indicate that RIPK1 cooperates with NF-κB signaling to prevent TNFR1-independent hepatocyte apoptosis and the development of chronic liver disease and cancer, but acts downstream of TNFR1 signaling to promote DEN-induced liver tumorigenesis.
منابع مشابه
NEMO Prevents Steatohepatitis and Hepatocellular Carcinoma by Inhibiting RIPK1 Kinase Activity-Mediated Hepatocyte Apoptosis
IκB kinase/nuclear [corrected] factor κB (IKK/NF-κB) signaling exhibits important yet opposing functions in hepatocarcinogenesis. Mice lacking NEMO in liver parenchymal cells (LPC) spontaneously develop steatohepatitis and hepatocellular carcinoma (HCC) suggesting that NF-κB prevents liver disease and cancer. Here, we show that complete NF-κB inhibition by combined LPC-specific ablation of RelA...
متن کاملRIPK1 protects from TNF-α-mediated liver damage during hepatitis
Cell death of hepatocytes is a prominent characteristic in the pathogenesis of liver disease, while hepatolysis is a starting point of inflammation in hepatitis and loss of hepatic function. However, the precise molecular mechanisms of hepatocyte cell death, the role of the cytokines of hepatic microenvironment and the involvement of intracellular kinases, remain unclear. Tumor necrosis factor ...
متن کاملHematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis.
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is recruited to the TNF receptor 1 to mediate proinflammatory signaling and to regulate TNF-induced cell death. RIPK1 deficiency results in postnatal lethality, but precisely why Ripk1(-/-) mice die remains unclear. To identify the lineages and cell types that depend on RIPK1 for survival, we generated conditional Ripk1 mice. Tamoxi...
متن کاملTAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis.
The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice ...
متن کاملNEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions
Intestinal epithelial cells (IECs) regulate gut immune homeostasis, and impaired epithelial responses are implicated in the pathogenesis of inflammatory bowel diseases (IBD). IEC-specific ablation of nuclear factor κB (NF-κB) essential modulator (NEMO) caused Paneth cell apoptosis and impaired antimicrobial factor expression in the ileum, as well as colonocyte apoptosis and microbiota-driven ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 127 7 شماره
صفحات -
تاریخ انتشار 2017